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Abstract  

The gravitational equation of motion of laboratory bodies made up of electrically inter- 
acting molecules, the bodies being coupled to non-geodesic laboratories, is obtained for 
metrical theories of gravity. Application is made to the experiment of Witteborn and 
Fairbank in which electrons or positrons are 'dropped' inside a conducting shield. We 
show that the inertial and gravitational weight of a body depends on the location of the 
supporting force, and that a laboratory body, in general, possesses an inertial or gravi- 
tational mass tensor which differs from the body's energy content divided by the speed 
of light squared. 

1. Introduction 

Previously the passive gravitational mass (Me) and inertial mass (MI) have 
separately been calculated for realistic laboratory bodies (Nordtvedt, 1970). 
In that calculation we assumed the general class of  metric theories of  gravity 
(Nordtvedt, 1968).One of  our results, that the ratio M c / M  1 = 1, could in 
retrospect be obtained quite simply. If  we transform to a geodesic coordinate 
system which is free-falling at the rate g, the metric field &,v(r, t) takes locally 
the Minkowski form, The equations of  motion of  the interacting matter  which 
makes up the laboratory body are then those of  special relativity, in which a 
free body  wilt experience non-accelerative motion. 

In this paper we wifl consider situations where the problem is not simplified 
by going to a geodesic (free-falling) coordinate system-si tuat ions ',,;'here the 
body is not free but rather is coupled in some way to a non-geodesic laboratory. 
We can imagine two classes o f  such experiments: (1) bodies can be held at rest 
in the laboratory ('weighing experiments ')  and (2) bodies can be allowed to fall 
and compared with the free-fall rate g. 

Our calculational results will be applicable to the analysis of  'free-fall' experi. 
ments with charged elementary particles (Witteborn & Fairbank, 1967), to 
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experiments which 'weigh' bodies in gravitational or acceleration fields, and to 
envisioning possible variations on the E6tv6s-type experiments. 

Here again we assume the validity of the general class of metric theories of 
gravity; also gravitational gradients are neglected. The results vail consequently 
exhibit a complete equivalence between gravitational acceleration and acceler- 
ation of the coordinate frame (Einstein's equivalence principle). 

2. The Metric  f o r  Local  Physics 

Assuming the me tric class of gravitational theories and a quasi-static 
distribution of massive objects m i at locations r i, a metric field guy(r, t) leads 
t o  an invariant line element 

ds 2 -gt~v(r, O d x  ~ dx  v, (2.1) 

# -- O, 1, 2, 3 (ct, x ,  y ,  z) ,  which takes the form in isotropic coordinates 

ds 2 =A(r, mi ,  ri) d t  2 - B(r, m i, ri) dr 2 (2.2) 

where A and B are functions of the field point r and the mass distribution 
(mr, ri). 

Expanding A and B in Taylor series 

A(r) =A o + Al .r + O(r 2) . . . .  (2.3a) 

B(r )  = Bo + Bi.  r + O(r 2) . . . .  (2.3b) 

we can then use the coordinate freedom of metric theories to rescale the time 
and space coordinates: 

~/(A o)t = t', (2.4a) 

~/(Bo) r -= r', (2.4b) 

which puts the line element into the form (we hereafter use units in which 
c = I )  

ds 2 = (1 - 2g. r) d t  2 - (1 + 27g. r) dr 2 (2.5) 

with g identified as the local gravitational acceleration and 3' as a theory- 
dependent (and gauge-dependent) dimensionless number. An additional purely 
spatial coordinate transformation 

r'  - -  r - -  ½ 7 r 2 g  + 7g. IT ( 2 . 6 )  

finally brings the line element to the simple form 

ds 2 = (1 - 2g. r) d t  2 - dr  2. (2.7) 

This metric (2.7) can also be obtained by accelerating an inertial coordinate 
frame; under the transformation 

t' = t(1 + g .  r), (2.8a) 



NON-GEODESIC LABORATORY BODIES 271 

r' = r + ½gt 2. (2.8b) 

The Minkowski line element 

ds 2 = dt 2 - dr 2 (2.9) 

takes the form (2.7). This duality of interpretation of the physical orion of 
the line element (2.7) is the mathematical basis of  Einstein's equivalence 
principle and is incorporated into the foundations of metric theories of gravity. 

Our ability to eliminate the spatial metric field potential via the coordinate 
transformation (2.6) leads to the theorem: 

No local gravitational experiment in which the gravitational gradients are 
neglected can measure the theory-dependent parameter 7. 

i ~  et 
¢~(r) = I r -  rzl 

and 

3. Equation o f  Motion o f  CTzarged Particles 

Using previous results (Nordtvedt, 1970) the Maxwell fields in a metric 
gravitational field given by (2.7) are 

( r -  ri) 
[1 - ½ g.  (r + ri)] - ½ ~ .  ei ai + . . . .  (3.1 a) 

I I" "7" r ri 

A(r)= ~ e ~ v i +  . . . .  (3.1b) 

in which charges ei are traveling at velocities vi and acceleration ai. Also we 
have found the equation of motion of a charged particle to sufficient accuracy, 

d 
ma + ½mv2a + my.  av + ~ (mg. rv) = mg + ½mv2g - e(V~ + A), (3.2) 

neglecting magnetic forces. The electrical force term in (3.2) can be evaluated 
using (3.1a, b): 

-- ~ .  et 
• ri ( 1 -  r )+½ I r - r i l  ( g - a i )  - ( V ~  + A) = E et g 

i J r - t i t  3 " , 

e, 
+ ½ I r -- rt 13 (r - Yi). (g -- ai) (r - r/) + . . .  (3.3) 

Applying (3.2) and (3.3) to the case of a charged elementary particle (m, e) 
instantaneously at rest in a laboratory which is itself accelerating at rate aL 
glVeS 

e a _ _ . g + _ E +  e_f__'~ Qt t ~ _ a L )  
m 2 m  ~ z ' l r -  r~l ~ s  

• '~ ,  QI (r -- r~ )(r -- r~) . (g -- aL ); (3.4) 
+ ~m .7,  I r -  r~ [ 3 
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E is the laboratory electrical field, Qi are the laboratory charges. (3.4) loses its 
anomalous terms when the laboratory is in free-fall (aL = g). 

4. Equation o f  Motion of  Laboratory Bodies 

Consider now a neutral, macroscopic laboratory body viewed as an 
assembly of interacting charged particles (an atomic and solid-state model of 
matter). We allow the body to be in interaction with the laboratory via electri- 
cal forces of both a short-range type (solid state contact forces) and of a long- 
range type (e.g. polarization forces from non-contacting capacitor plates). The 
electrical fields (3.3) which each charged particle in the body experiences will 
result from both external laboratory charges Qi and other internal charges in 
the body el. To obtain an equation of motion for the body then, an appropriate 
sum of (3.2) over all particles in the body must be made. 

We will need to apply a virial relation for the body experiencing external 
forces, 

~. mivi.av i +½ ril .ari /=- ~ f / (ex)a ,  ri, 
l l 

(4.1) 

when fi (ex) is the external electrical force acting on the ith particle of the 
body. We assume no net torque acting on the body. 

Then by use of (3.2), (3.3), and (4.1) a body's acceleration becomes 

M a -  ~ fi(ex)a, r i =Mg - ~ fi(ex)g, r i + ~ eiE(rt) 
t i i 

- ½ ~ Qiei +2g_tQiei(g aL) + .(g -- aL), (4.2) q rii ~ii rii a riirii 

where M is the body's energy content; 

M- ,z (m, + ½re,v,2) + ½ Z (4.3) 
t; r~ 

and E(r) is the laboratory electrical field, 

E(r) =- 
Qi 

I r - n 13 (r - ri). (4 .4 )  

Note that even in the absence of gravity or an accelerated laboratory, the 
body possesses an inertial mass tensor: 

M ~ # - - M ~ -  ~: I/}(ex)ic,[rda (4.5) 
t 

and hence the simple prescription of special relativity for inertial mass-E = 
Mc2-1oses its validity. 
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If we consider a 'weighing" experiment (aL = 0 and the demand a = 0), (4.2) 
gives us the required supporting force: 

~eiE(ri)[1-g.ril = - M g -  ½ s Qiei g -  ½ ~rij.gri/. (4.6) 

Short-range (solid state) external electrical forces and long-range forces in 
(4.6) participate differently; this can be illustrated by considering a neutral, 
polarizable body: 

e i = 0, (4.7a) 
/ 

~e/r i = p, (4.7b) 
/ 

and 

E(r) = ESR(r ) + E~rl~, (4.7c) 

then (4.6) takes the form: 

f p ( x ) E ~  (1 - g. x) d 3 x  + p. VELR 

=--Mg + ½(P.ELRg ÷ p.gELR -- ELR.gp)--  ~ r--~.S ri • ~ i .  pri, 
(4.8) 

or on defining the potential 

2 9: W(r)- t r _ r~13 ( r  - r)  . g ( r  - n ) . p ,  

(4.8) can be written 

J'a(x)EsR(X)[1 - g. xl  d 3 x  ÷ p. VELR 

= - O f -  p.  ELR)g + ½ p. gELR + ½ VW. (4.9) 

5. Electron-Positron Free-Fall Experiment' 
Recurring suggestions are made that anti-particles might accelerate oppo- 

sitdy (or differently) from particles in a gravitational field, though most all 
theory contradicts this, and it has been argued (Schiff) that this would produce 
gravitational to inertial mass ratio variations in different atoms because of the 
presence of 'virtual' electron-positron pairs in the atomic and nuclear electric 
fields. 

Experiments have been designe d to measure the gravitational acceleration 
of electrons and anti-electrons (positrons) (Witteborn & Fairbank, 1967). Free 
deetrons are 'dropped' inside a conducting metallic cylinder (metallic to shield 
out electric fields), the electrons being found to fall at less than 0'09g, experi- 
mental error compatible with no acceleration. This confirms Calculations 
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(Schiff & Barnhill, 1966) which show that a gravitationally stressed conductor 
will produce an interior electric field necessary to support its conduction 
electrons in the gravitational field, E = (rn/e)g. The same experiment should 
then find positrons to fall at the rate 2g. 

Consider electrically charging the conducting shield up to some high 
potential comparable with the electron rest energy, 0"5 MeV. (3.4) gives the 
predicted acceleration of  the electron: 

e ~ Qi(r - re) 

+e._e_~ Oi 3 
2m I r - r e l  ( r -  rl) 'g(r - r)" (5.1) 

The acceleration field a of (5.1) fulfills the two exact cor,ditions 

.and 
V .  a = 4n ep/m,  (5.2a) 

a must vanish throughout a conducting shield in order that the conduction 
electron density be in static equilibrium, and the free-fall electron experiment 
measures a in the interior cavity of the conducting shield. 

Expanding the charge density in powers of lg I, (5,1) becomes in first order: 

e s '  (r- r,) -g I1 Qi!O)_.. 
m iz--,Ir-r l 3 2m i l r - r i l J  

^ ( o )  --. ,e , ,~  .A u i  
2m ~ [r - ri 13 (r - ri)(r - rt). g. (5.3) 

For a conducting sphere of radius R and charged to potential 

v--- 

(5.3) is fulfilled by an induced surface charge density 

[ , 
o(O) = _ . _ _ _ g ' R  2 1 + - ~  (5.4) 

From (5.2a, b) it can be shown that there will be no acceleration of an 
electron to first order in g for locations in the interior of a conducting shield, 
regardless of  the charge placed on the conductor. (5.2b) indicates that the 
tangential component of a is continuous from the conducting shield into the 
interior cavity; therefore the cavity boundary has no tangential acceleration 
field. Writing a as 

a = V x +  V x b  
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gives 

and 

47Te 
V2 x = - -  p (5.5a) 

m 

V~ b =e_e_ ~-" Q/ (r - rl) x 
m +z/.,. I r _ r . i  a g" 

The source of b is of second or higher order in g as 

(5.5b) 

~+ Qi 
I r - ~ l  a ( r -  rt) 

vanishes inside a conductor to zeroth order in g. Since therefore the tangential 
variations in X are of second or higher order in g, and in the cavity V2X = 0, the 
radial variations of × must also vanish to order I g I. 

Consequently no observable (linear in g) effect can be produced by highly 
charging up (eV ^ mc 2) the apparatus of Fairbank and Witterborn, in spite of 
the fact that we greatly rearrange [see (5.4)] the gravitationally induced 
electron density thereby. 

6. Summary 

We have studied the equation of motion of realistic laboratory bodies which 
are not in geodesic motion, with the goal of finding observable relativistic 
effects which are consequences of Einstein's equivalence principle. 

It was found that the inertial mass differs from the body's energy content 
in cases where external forces are applied to the body. The inertial mass 
becomes the mass tensor (4.5). 

Similarly, the gravitational mass differs from the energy content of the 
body, and hence the weight of a body (the force necessary to support the 
body in a gravitational field) is dependent on the location of the supporting 
forces as given in (4.6). Elsewhere (Nordtvedt, 1973) it has been shown that 
this result is simply derivable from considerations of energy conservation and 
the equivalence principle result that photons are energy-shifted when changing 
altitude in a gravitational or acceleration field. 

Considering the effects of the coupled gravitational electric fields on con- 
duction electrons, we have found that the induced electron density in a gravi- 
tationally supported or accelerated conducting shield is dependent on the 
dectric potential of the shield; however free-fall rates of electrons in an interior 
cavity are unaffected to linear order in g. 

All results of this paper are valid within the complete class of metric theories 
of gravity and in the equivalence principle approximation. Therefore the. 
effects are identically present in both gravitational fields and in accelerated 
coordinate frames. 
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